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Calculation of allele statistics and heuristics

Consider an allele a ∈ A = {A,T,C,G} at some fixed position p within an assembly of
1 ≤ p ≤ S sites. Let:

Ca,p count of allele a at position p (A.1)

Dp =
∑
a∈A

Ca,p coverage depth at position p (A.2)

fa,p =
Ca,p
Dp

observed frequency of allele a at position p (A.3)

Suppose also that for each read i at position p and allele a we have quality score qi such that
for 1 ≤ i ≤ Ca,p we have:

Qa,p =

∑Ca,p

i qi
Ca,p

average of allele a quality scores qi at p (A.4)

Quality-based expected error is calculated as usual but on the average allele quality score:

êa,p =
1

10
Qa,p
10

expected allele-specific error at position p (A.5)

The read-pair overlap disagreement rate êS is calculated over all sites where overlap occurs
between read-pairs:

êS =
# disagreeing overlapping read-pair observations

# overlapping read-pair observations
assembly-specific error (A.6)

Our computation of the one-sided second-order corrected binomial confidence interval up-
perbound [40] takes an estimate of error ê (either êa,p or êS), a coverage depth Dp cor-
responding to the variant allele site, and a z score corresponding to the chosen one-sided
confidence level (α) of the standard normal distribution [e.g., P (Z < z) = α for some
α ∈ {0.90, 0.95, 0.99, 0.999}]:

η =
1

3
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1
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z2 +

7

36
, variance V ≡ σ2 = ê− ê2

U(ê, Dp, z) =
Dp · ê+ η

Dp + 2η
+ z

√
V + (γ2 − γ1V )D−1p√

Dp

(A.7)



Statistically significant minor variants must reject the null hypothesis that their observed
frequency fa,p can be explained by estimates of error ê. Therefore, observed frequencies must
exceed the interval upperbound at some confidence level α with corresponding score zα:

fa,p > U(ê, Dp, zα) (A.8)

Our heuristic for confidence not machine error is calculated as:

f̂a,p = max{0, fa,p − êa,p} estimated frequency

ma,p =
f̂a,p
fa,p

confidence not sequencer error (A.9)

Automatic heuristic adjustment is calculated over the set of non-consensus alleles A that
have “zero confidence”:

A0 = {(a, p) ∈ A | ma,p = 0} subset with zero confidence

Fmin = user defined in: [0,0.5] minimum frequency heuristic

Fauto = max{Fmin, arg max
a,p ∈ A0

fa,p} automatic frequency heuristic (A.10)

Association measures for phased minor variants

Consider an assembly of S sites with coverage depths denoted Dx for 1 ≤ x ≤ S. The “joint
coverage depth” or number of reads with defined calls for any fixed pairs of sites x, y we
denote as Dx,y with the following properties:

Dx,x = Dx

Dx,y = 0 ⇐⇒ x, y never share a read

Dx,y ≤ minDx, Dy

Next consider an allele B ∈ {A,G,C, T} at site x. Let Cx(B|s = x) be the count of
allele B at x given the occurrence of site x. This could also just be written Cx(B). One
can further define the count of allele B at x given the co-occurrences of multiple sites x, y
as Cx(B|s1 = x & s2 = y). The frequency definitions follow:

Fx(B|s = x) =
Cx(B)

Dx

(A.11)

Fx(B|s1 = x & s2 = y) =
Cx(B|s1 = x & s2 = y)

Dx,y

(A.12)

F (min)
x (B) = min{Fx(B|s = x), Fx(B|s1 = x & s2 = y)} (A.13)



where F
(min)
x (B) can be considered a conservative estimate of individual site allele frequency.

The corollary definition of F
(max)
x (B) is the relaxed estimate. Joint frequency in terms of a

short-read assembly is defined as:

Fx,y(B1, B2) =
Cx,y(B1, B2)

Dx,y

(A.14)

where B1 and B2 are alleles at x and y respectively and Cx,y(B1, B2), or more explicitly
Cx,y(B1, B2|s1 = x & s2 = y), is the count of the alleles’ co-occurrence given both sites occur
on the read together.

From the study of di-nucleotide signatures within various genomes [42], di-nucleotide
“enrichment” may be defined as the ratio of the joint probability for two bases (actual
co-occurrence) over the product of the individual probabilities for each base (random expec-
tation of their co-occurrence). The elevated co-occurrence of phased minor variants ought
to be detectable using similar mathematical constructions. However, such an enrichment
measure is not normalized to give us a proper distance. Therefore, we may re-frame the
frequencies/probabilities in terms of association measures commonly used in text mining
literature [20]. Such association measure distances are easier to use and interpret for visual-
ization. First, we introduce a slightly modified Jaccard distance [21]:

Jx,y(B1, B2) = 1− Fx,y(B1, B2)

F
(max)
x (B1) + F

(max)
y (B2)− Fx,y(B1, B2)

(A.15)

a slightly modified, non-log mutual dependency distance [20]:

Mx,y(B1, B2) = 1− Fx,y(B1, B2)
2

F
(max)
x (B1) · F (max)

y (B2)
(A.16)

and our own experimental association distance:

Ex,y(B1, B2) = 1− Fx,y(B1, B2) ·min{F (min)
x (B1)F

(min)
y (B2)}

F
(max)
x (B1) · F (max)

y (B2)
(A.17)

The use of minimums and maximums ensure conservative estimates of association. Addi-
tionally, we show what would occur if one were to convert the joint probability to a distance
for minority variants:

1− 2 · Fx,y(B1, B2) (A.18)


